

GradReady Physics® Formula Sheet

CONSTANT ACCELERATION FORMULAE

- v = final velocity (m/s)
- u = initial velocity (m/s)
- a = acceleration (m/s²)
- s = displacement (m)
- t = time(s)

 $S = ut + 0.5at^2$

V = u + at

 $S = vt - 0.5at^2$

 $S = \frac{(u + v) \times t}{}$

 $v^2 = u^2 + 2as$

TORQUE

 $T = F \times d \times sin(\theta)$

- T = Torque (Nm)
- F = Force applied on lever (N)
- d = Distance that the force is applied from the axis of rotation (m)
- θ = Angle between force vector and distance vector, $sin(\theta)$ is equal to 1 if perpendicular

NEWTON'S 2ND LAW OF MOTION

 $\Sigma F = m \times a$

 ΣF = net force acting on an object (N)

- m = mass of object (kg)
- a = acceleration of object (m/s²)

MECHANICAL

ENERGY

ME = mechanical energy (J)

Us = spring potential energy, a.k.a elastic potential energy (J)

Ug = gravitational potential energy (J)

KE = kinetic energy (J)

MOMENTUM

p = mv

p = Momentum (kg x m/s)

m = Mass (kg)

v = Velocity (m/s)

GRAVITATIONAL

POTENTIAL ENERGY

Ug = gravitational potential energy (J)

m = Mass of object (kg)

g = Acceleration due to gravity = 9.8 m/s²= gravitational field strength = 9.8 N/kg

h = Vertical height above a reference level (m)

TEMPERATURE

CHANGE

$$Q = m \times C \times (T_{final} - T_{initial})$$

- Q = heat energy applied (J)
- m = mass of object (kg)
- c = specific heat capacity of object (J/kg/K)
- T = initial and final temperatures of object (K)

FORCE ON A MOVING

CHARGE

$$F = qvb$$

- F = Magnetic Force
- q = Charge of the particle
- v = Velocity of the charged particle
- b = Magnetic Field Strength

OHM'S

LAW

$$V = IR$$

- V = Voltage (volts)
- I = Current (amps)
- R = Resistance (ohms)

ELECTRICAL

POWER

$$P = IV = I^2R = \frac{V^2}{R}$$

- P = Power
- V = Voltage (volts)
- I = Current (amps)
- R = Resistance (ohms)

KINETIC

ENERGY

$$KE = \frac{1}{2} mv^2$$

KE = Kinetic energy of object (J)

m = Mass of object (kg)

v = Velocity of object (m/s)

GRAVITATIONAL

FORCE

$$F = \frac{G \times m_1 \times m_2}{r_2}$$

F = gravitational force of attraction from the center of mass of the two objects (N)

G = gravitational constant 6.674x10⁻¹¹Nm kg

m1 = mass of one of the objects (kg)

m2 = mass of the other object (kg)

r = distance between the center of the mass of the two objects (m)

PRESSURE

$$P = \frac{F}{A}$$

P = Pressure (N/m or Pascals)

F = Force applied on a surface (N)

A = Area of surface (m²)

ARCHIMEDES

PRINCIPLE

$$\textbf{F}_{b} \text{=} \ \textbf{F}_{g \text{ of object}} \ \text{=} \ \textbf{F}_{g \text{ of fluid displaced}} \ \text{=} \ \textbf{p}_{g \text{ luid}} \ \textbf{X} \ \textbf{V}_{g \text{ of fluid displaced}} \ \textbf{x} \ \textbf{g}$$

F_b = Force of buoyance (N)

F_{g of object} = Weight of object (N)

Fg of fluid displaced = Weight of fluid displaced (N)

P_{fluid} = Density of fluid (kg/m³)

V fluid displaced = Volume of fluid displaced by the object in the fluid (m³)

g = gravitational field strength, a.k.a acceleration due to gravity = 9.8 N/kg = 9.8 m/s

Now You Can Subscribe to Our GAMSAT® Courses on a Monthly Basis & Cancel Anytime!

Early subscribers enjoy lower monthly fees!

You can now subscribe to our courses, and have unlimited access to our GAMSAT® preparation resources on a month-to-month basis.

How the Subscription Works:

- **Simple Subscription**: Just head over to our Courses Page and subscribe to your preferred course. The subscription pricing is available for all of our Online Courses.
- Hassle-free Cancellation: Cancel anytime and you won't be billed for the next monthly cycle.
- *Early Subscription Pricing*: Early subscribers enjoy lower monthly fees! Prices for new enrolments increase as we approach the GAMSAT® exam.

Sign up today and join 11,000+ GradReady Students, with a <u>statistically</u> <u>significant</u> average improvement of 20+ Percentile Points, 11+ years in a row! <u>https://gradready.com.au/gamsat-preparation-courses/</u>

-

$W = F \times d \times cos(\theta)$

W = Work done (J)

F = Force applied on object (N)

d = Distance object moves due to the application of the force (m)

 θ = Angle between force vector and displacement vector, $\cos(\theta)$ is equal to 1 when the force vector is in the same direction as the movement of the object

WORK

 $W = F \times d$

Or W = Work done (J)

F = Component of the force that acts parallel to the distance only (N)

d = Distance object moves due to the application
of the force (m)

Average Improvement of **20+** Percentile Points Over the last **10+** Years

10,000+ Happy Students

10+ Years Experience

Most Advanced Technology

GRADREADY.COM.AU
TEL:(03) 9819 6696