GradReady GradReady Physics ${ }^{\circledR}$ Formula Sheet

CONSTANT ACCELERATION FORMULAE

NEWTON'S 2ND LAW

OF MOTION

MECHANICAL

ENERGY

GRAVITATIONAL

POTENTIAL ENERGY

$$
p=m v
$$

$$
\Sigma F=m \times a
$$

$\Sigma F=$ net force acting on an object (N)
$\Sigma F=$ net force acting on an object (N)
$\mathrm{m}=$ mass of object (kg)
$\mathrm{m}=$ mass of object (kg)
$\mathrm{a}=$ acceleration of object $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$\mathrm{a}=$ acceleration of object $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

$$
M E=U_{s}+U_{g}+K E
$$

ME = mechanical energy (J)
ME = mechanical energy (J)
Us = spring potential energy, a.k.a elastic
Us = spring potential energy, a.k.a elastic
potential energy (J)
potential energy (J)
Ug = gravitational potential energy (J)
Ug = gravitational potential energy (J)
KE = kinetic energy (J)
KE = kinetic energy (J)

MOMENTUM

$$
\mathrm{U}_{\mathrm{g}}=\mathrm{mgh}
$$

TORQUE

$$
T=F x d x \sin (\theta)
$$

T = Torque (Nm)
F = Force applied on lever (N)
$\mathrm{d}=$ Distance that the force is applied from the axis of rotation (m)
$\theta=$ Angle between force vector and distance vector, $\sin (\theta)$ is equal to 1 if perpendicular

[^0]TEMPERATURE
CHANGE

KINETIC

ENERGY

$K E=\frac{1}{2} m v^{2}$

KE = Kinetic energy of object (J)
$\mathrm{m}=$ Mass of object (kg)
$\mathrm{v}=$ Velocity of object (m / s)

GRAVITATIONAL

FORCE
$F=\frac{G \times m_{1} \times m_{2}}{r_{2}}$

$F=q v b$

F = Magnetic Force
$q=$ Charge of the particle
$\mathrm{v}=$ Velocity of the charged particle
b = Magnetic Field Strength
$F=$ gravitational force of attraction from the center of mass of the two objects (N)
$\mathrm{G}=$ gravitational constant $6.674 \times 10^{-11} \mathrm{Nm}$ kg
$\mathrm{m} 1=$ mass of one of the objects (kg)
m 2 = mass of the other object (kg)
$r=$ distance between the center of the mass of the two objects (m)

PRESSURE

$$
P=\frac{F}{A}
$$

P = Pressure (N/m or Pascals)
$\mathrm{F}=$ Force applied on a surface (N)
A = Area of surface (m^{2})

$\mathrm{V}=$ Voltage (volts)
 I = Current (amps)
 R = Resistance (ohms)
 ELECTRICAL POWER
 LAW

$$
P=I V=I^{2} R=\frac{V^{2}}{R}
$$

P = Power
$\mathrm{V}=$ Voltage (volts)
I = Current (amps)
$\mathrm{R}=$ Resistance (ohms)

ARCHIMEDES
 PRINCIPLE

$F_{b}=F_{\text {gof object }}=F_{\text {gof fluid displaced }}=p_{\text {fulud }} \times V_{g \text { of fluid displaced }} \times g$
$\mathrm{F}_{\mathrm{b}}=$ Force of buoyance (N)
$\mathrm{F}_{\mathrm{g} \text { of object }}=$ Weight of object (N)
F_{g} of fluid displaced $=$ Weight of fluid displaced (N)
$P_{\text {fluid }}=$ Density of fluid $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
Vfluid displaced $=$ Volume of fluid displaced by the object in the fluid (m^{3})
$\mathrm{g}=$ gravitational field strength, a.k.a acceleration due to gravity $=9.8 \mathrm{~N} / \mathrm{kg}=9.8 \mathrm{~m} / \mathrm{s}$

GAMSAT® Online Courses Now Open for 2024-2025!

Enrol Now \& Get Access until March 2025

Our GAMSAT® Online Courses are now open for 2024-2025! Join 10k+ GradReady Students, with an average improvement of 20+ Percentile Points, 10+ years in a row!

We've been working hard following the most recent GAMSAT® exam to make updates to our content and industry-leading online learning system based on student feedback, with continuous improvements scheduled throughout the coming year.

We are committed to perfecting our GAMSAT® preparation materials, with continuous improvements scheduled throughout the coming year. We will be adding new MCQs to our 4000+ question
bank throughout the year. We've also recently created 4 new GAMSAT® Practice Tests which mimic the official ACER GAMSAT® exam in detail, bringing the total up to 12 exams. In addition, starting from June, you will gain access to a weekly 1-hour session with our experienced tutors.

Join 10k+ GradReady Students with an average improvement of 20+ Percentile Points, 10+ years in a row!

ELECTROSTATIC FORCE

$F=\frac{k \times q_{1} \times q_{2}}{r^{2}}$

F = electrostatic force acting between two charged
objects (N)
k = Coulomb's constant = 9.0* 10 NmC
q1 = magnitude of one of the charged object (C)
q2 = magnitude of the other charged object (C)
$r=$ distance between the center of the two charges (m)

WORK

$W=F x d x \cos (\theta)$

$W=F x d$

W = Work done (J)
or
F = Force applied on object (N)
d = Distance object moves due to the application of the force (m)
$\theta=$ Angle between force vector and displacement vector, $\cos (\theta)$ is equal to 1 when the force vector is in the same direction as the movement of the object
$\mathrm{W}=$ Work done (J)
$\mathrm{F}=$ Component of the force that acts parallel to the distance only (N)
$d=$ Distance object moves due to the application of the force (m)

Average Improvement of 20+ Percentile Points

Over the last 10+ Years

$10,000+$	$10+$	Most Advanced
Happy Students	Years Experience	Technology

[^0]: Ug = gravitational potential energy (J)
 $\mathrm{m}=$ Mass of object (kg)
 $\mathrm{g}=$ Acceleration due to gravity $=9.8 \mathrm{~m} / \mathrm{s}^{2}=$ gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
 $h=$ Vertical height above a reference level (m)

