

GradReady Physics® Formula Sheet

CONSTANT ACCELERATION FORMULAE

- v = final velocity (m/s)
- u = initial velocity (m/s)
- a = acceleration (m/s²)
- s = displacement (m)
- t = time(s)

 $T = F \times d \times sin(\theta)$

T = Torque (Nm)

TORQUE

- F = Force applied on lever (N)
- d = Distance that the force is applied from the axis of rotation (m)
- θ = Angle between force vector and distance vector, $sin(\theta)$ is equal to 1 if perpendicular

NEWTON'S 2ND LAW OF MOTION

$$\Sigma F = m \times a$$

V = u + at

 $S = ut + 0.5at^2$

 $S = vt - 0.5at^2$

 $v^2 = u^2 + 2as$

- ΣF = net force acting on an object (N)
- m = mass of object (kg)
- a = acceleration of object (m/s²)

MECHANICAL

ENERGY

- ME = mechanical energy (J)
- Us = spring potential energy, a.k.a elastic potential energy (J)
- Ug = gravitational potential energy (J)
- KE = kinetic energy (J)

MOMENTUM

$$p = mv$$

- p = Momentum (kg x m/s)
- m = Mass (kg)
- v = Velocity (m/s)

GRAVITATIONAL

POTENTIAL ENERGY

- Ug = gravitational potential energy (J)
- m = Mass of object (kg)
- g = Acceleration due to gravity = 9.8 m/s²= gravitational field strength = 9.8 N/kg
- h = Vertical height above a reference level (m)

TEMPERATURE

CHANGE

 $Q = m \times C \times (T_{final} - T_{initial})$

- Q = heat energy applied (J)
- m = mass of object (kg)
- c = specific heat capacity of object (J/kg/K)
- T = initial and final temperatures of object (K)

FORCE ON A MOVING

CHARGE

F = qvb

- F = Magnetic Force
- q = Charge of the particle
- v = Velocity of the charged particle
- b = Magnetic Field Strength

OHM'S

LAW

V = IR

- V = Voltage (volts)
- I = Current (amps)
- R = Resistance (ohms)

ELECTRICAL

POWER

$$P = IV = I^2R = \frac{V^2}{R}$$

- P = Power
- V = Voltage (volts)
- I = Current (amps)
- R = Resistance (ohms)

KINETIC

ENERGY

$$KE = \frac{1}{2} mv^2$$

KE = Kinetic energy of object (J)

m = Mass of object (kg)

v = Velocity of object (m/s)

GRAVITATIONAL

FORCE

$$F = \frac{G \times m_1 \times m_2}{r_2}$$

F = gravitational force of attraction from the center of mass of the two objects (N)

G = gravitational constant 6.674x10⁻¹¹Nm kg

m1 = mass of one of the objects (kg)

m2 = mass of the other object (kg)

r = distance between the center of the mass of the two objects (m)

PRESSURE

$$P = \frac{F}{A}$$

P = Pressure (N/m or Pascals)

F = Force applied on a surface (N)

A = Area of surface (m²)

ARCHIMEDES

PRINCIPLE

$$\textbf{F}_{b} = \textbf{F}_{g \text{ of object}} = \textbf{F}_{g \text{ of fluid displaced}} = \textbf{p}_{g \text{ ulu}} \textbf{X} \textbf{V}_{g \text{ of fluid displaced}} \textbf{X} \textbf{g}$$

F_b = Force of buoyance (N)

 $F_{g \text{ of object}} = Weight \text{ of object } (N)$

Fg of fluid displaced = Weight of fluid displaced (N)

P_{fluid} = Density of fluid (kg/m³)

Vfluid displaced = Volume of fluid displaced by the object in the fluid (m³)

g = gravitational field strength, a.k.a acceleration due to gravity = 9.8 N/kg = 9.8 m/s

r = distance between the center of the two charges (m)

$W = F \times d \times \cos(\theta)$

W = Work done (J)

F = Force applied on object (N)

d = Distance object moves due to the application of the force (m)

 θ = Angle between force vector and displacement vector, $\cos(\theta)$ is equal to 1 when the force vector is in the same direction as the movement of the object

WORK

 $W = F \times d$

Or W = Work done (J)

F = Component of the force that acts parallel to the distance only (N)

d = Distance object moves due to the application
of the force (m)

Average Improvement of **20+** Percentile Points Over the last **12+** Years

12,000+ Happy Students

12+ Years Experience Most Advanced Technology

GRADREADY.COM.AU
TEL:(03) 9819 6696